Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Preprint En | PREPRINT-MEDRXIV | ID: ppmedrxiv-22279558

BackgroundT cells are important in preventing severe disease from SARS-CoV-2, but scalable and field-adaptable alternatives to expert T cell assays are needed. The interferon-gamma release assay QuantiFERON platform was developed to detect T cell responses to SARS-CoV-2 from whole blood with relatively basic equipment and flexibility of processing timelines. Methods48 participants with different infection and vaccination backgrounds were recruited. Whole blood samples were analysed using the QuantiFERON SARS-CoV-2 assay in parallel with the well-established Protective Immunity from T Cells in Healthcare workers (PITCH) ELISpot, which can evaluate spike-specific T cell responses. AimsThe primary aims of this cross-sectional observational cohort study were to establish if the QuantiFERON SARS-Co-V-2 assay could discern differences between specified groups and to assess the sensitivity of the assay compared to the PITCH ELISpot. FindingsThe QuantiFERON SARS-CoV-2 distinguished acutely infected individuals (12-21 days post positive PCR) from naive individuals (p< 0.0001) with 100% sensitivity and specificity for SARS-CoV-2 T cells, whilst the PITCH ELISpot had reduced sensitivity (62.5%) for the acute infection group. Sensitivity with QuantiFERON for previous infection was 12.5% (172-444 days post positive test) and was inferior to the PITCH ELISpot (75%). Although the QuantiFERON assay could discern differences between unvaccinated and vaccinated individuals (55-166 days since second vaccination), the latter also had reduced sensitivity (55.5%) compared to the PITCH ELISpot (66.6%). ConclusionThe QuantiFERON SARS-CoV-2 assay showed potential as a T cell evaluation tool soon after SARS-CoV-2 infection but has lower sensitivity for use in reliable evaluation of vaccination or more distant infection. Graphical abstractWith the exception of acute infection group, the PITCH ELISpot S1+S2 had greater sensitivity for SARS-CoV-2 specific T cell responses compared with the QuantiFERON SARS-CoV-2 assay tube Ag3. O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=64 SRC="FIGDIR/small/22279558v1_ufig1.gif" ALT="Figure 1"> View larger version (13K): org.highwire.dtl.DTLVardef@1913a88org.highwire.dtl.DTLVardef@199b88corg.highwire.dtl.DTLVardef@12309cborg.highwire.dtl.DTLVardef@15807a0_HPS_FORMAT_FIGEXP M_FIG C_FIG

2.
Preprint En | PREPRINT-MEDRXIV | ID: ppmedrxiv-22276196

Obesity is associated with an increased risk of severe Covid-19. However, the effectiveness of SARS-CoV-2 vaccines in people with obesity is unknown. Here we studied the relationship between body mass index (BMI), hospitalization and mortality due to Covid-19 amongst 3.5 million people in Scotland. Vaccinated people with severe obesity (BMI>40 kg/m2) were significantly more likely to experience hospitalization or death from Covid-19. Excess risk increased with time since vaccination. To investigate the underlying mechanisms, we conducted a prospective longitudinal study of the immune response in a clinical cohort of vaccinated people with severe obesity. Compared with normal weight people, six months after their second vaccine dose, significantly more people with severe obesity had unquantifiable titres of neutralizing antibody against authentic SARS-CoV-2 virus, reduced frequencies of antigen-experienced SARS-CoV-2 Spike-binding B cells, and a dissociation between anti-Spike antibody levels and neutralizing capacity. Neutralizing capacity was restored by a third dose of vaccine, but again declined more rapidly in people with severe obesity. We demonstrate that waning of SARS-CoV-2 vaccine-induced humoral immunity is accelerated in people with severe obesity and associated with increased hospitalization and mortality from breakthrough infections. Given the prevalence of obesity, our findings have significant implications for global public health.

3.
Preprint En | PREPRINT-MEDRXIV | ID: ppmedrxiv-22275865

Both infection and vaccination, alone or in combination, generate antibody and T cell responses against SARSCoV2. However, the maintenance of such responses, and hence protection from disease, requires careful characterisation. In a large prospective study of UK healthcare workers (Protective immunity from T cells in Healthcare workers (PITCH), within the larger SARSCoV2 immunity and reinfection evaluation (SIREN) study) we previously observed that prior infection impacted strongly on subsequent cellular and humoral immunity induced after long and short dosing intervals of BNT162b2 (Pfizer/BioNTech) vaccination. Here, we report longer follow up of 684 HCWs in this cohort over 6-9 months following two doses of BNT162b2 or AZD1222 (Oxford/AstraZeneca) vaccination and up to 6 months following a subsequent mRNA booster vaccination. We make three observations: Firstly, the dynamics of humoral and cellular responses differ; binding and neutralising antibodies declined whereas T and memory B cell responses were maintained after the second vaccine dose. Secondly, vaccine boosting restored IgG levels, broadened neutralising activity against variants of concern including omicron BA.1, BA.2 and BA.5, and boosted T cell responses above the 6 month level post dose 2. Thirdly, prior infection maintained its impact driving larger as well as broader T cell responses compared with never-infected people, a feature maintained until 6 months after the third dose. In conclusion, broadly cross-reactive T cell responses are well maintained over time, especially in those with combined vaccine and infection-induced immunity (hybrid immunity), and may contribute to continued protection against severe disease.

4.
Preprint En | PREPRINT-MEDRXIV | ID: ppmedrxiv-20202929

A major issue in identification of protective T cell responses against SARS-CoV-2 lies in distinguishing people infected with SARS-CoV-2 from those with cross-reactive immunity generated by exposure to other coronaviruses. We characterised SARS-CoV-2 T cell immune responses in 168 PCR-confirmed SARS-CoV-2 infected subjects and 118 seronegative subjects without known SARS-CoV-2 exposure using a range of T cell assays that differentially capture immune cell function. Strong ex vivo ELISpot and proliferation responses to multiple antigens (including M, NP and ORF3) were found in those who had been infected by SARS-CoV-2 but were rare in pre-pandemic and unexposed seronegative subjects. However, seronegative doctors with high occupational exposure and recent COVID-19 compatible illness showed patterns of T cell responses characteristic of infection, indicating that these readouts are highly sensitive. By contrast, over 90% of convalescent or unexposed people showed proliferation and cellular lactate responses to spike subunits S1/S2, indicating pre-existing cross-reactive T cell populations. The detection of T cell responses to SARS-CoV-2 is therefore critically dependent on the choice of assay and antigen. Memory responses to specific non-spike proteins provides a method to distinguish recent infection from pre-existing immunity in exposed populations.

...